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A rational-dilation wavelet transform (RWT) based pan-sharpening method for multi-spectral (MS) images
of various oscillatory nature is proposed. The previous multi-scale transforms, such as wavelets, curvelets
and contourlets, decompose an image into channels with low constant Q-factors, and aren’t suitable for pan-
sharpening images with different behavior in frequency domain. The RWT as an over-complete scheme
not only increases the sampling in spatial and frequency domain, but also provides a tunable Q-factor
approach to be suitable for a given dataset. We studied its multi-scale decomposition scheme and the
RWT based pan-sharpening method. The MS image pan-sharpening experiments show that this method
using a better suitable parameter set can achieve a promising performance and often outperforms many
other widely-used pan-sharpening methods both in visual quality and in term of evaluation indexes.
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Pan-sharpening is known as the injection of fine spatial
information from the high spatial resolution panchro-
matic (PAN) image into the low spatial resolution
multi-spectral (MS) images to get high spatial reso-
lution MS images. This technique is of special inter-
est in remote sensing, because satellites usually take
PAN and MS images separately and high spatial and
spectral resolution are both necessary for various com-
plex tasks in land-cover classifications. Many studies
proposed that multi-scale transforms (MST) are very
useful for pan-sharpening or fusing MS image, such as
wavelet transform (WT)[1−4] and non-separable WT[5,6].
Also, curvelet transform (CVT)[7−9] and contourlet
transform[10,11] (CT), as two more efficient multi-scale
and directional representation approach over the WT,
were latterly introduced to the area and showed more de-
sirable performances. Moreover, some studies show that
the non-subsampled counterparts of some of these MSTs
can further improve pan-sharpening quality, such as non-
sampled WT[12] (NSWT) and non-sampled CT[13,14]

(NSCT). However, these previous MST based methods
should be improved for MS images of different oscillatory
nature.

The low-Q multi-scale decomposition scheme (the
multi-scale decomposition scheme with a low Q-factor)
of the previous MST methods above is not suitable for
various images with different behavior in frequency do-
main. In the radial direction of frequency domain, the
previous MST methods iteratively decompose a signal
into channels having a same low Q-factor, and belong
to constant low-Q transforms. Figure 1 illustrates this
decomposition scheme by taking the WT as an example.
That is, the bandwidth of the band-pass filter with a
little high central frequency will be too large to lead to
a sparse distribution of these filters in high frequency
area. This decomposition scheme or the Q-factor is only

suitable for analyzing little oscillatory signal, but not
for relatively more oscillatory signal[15,16]. MS images
often contain more/less oscillatory features that may
cause rich high/low frequency component in frequency
domain, thus require a tunable-Q transform alternative.

Some approaches have been proposed to obtain the
tunable-Q scheme. For example, Oppenheim and Makur
et al. provided a mapping method that maps a dis-
crete sequence to another specific sequence to achieve
an unequally spaced frequency sampling[17,18]. Diniz
et al. advised a kind of “bounded-Q fast filter bank”
that splits the spectrum to obtain a piecewise linear
frequency decomposition[19]. However, these methods
neither provide a really tunable-Q factor, nor offer an
efficient inverse transform. Recently, Bayram proposed
a kind of over-complete rational-dilation wavelet trans-
form (RWT) that achieves a constant-Q analysis with a
really-tunable Q-factor. Compared to that of the previ-
ous MSTs, its Q-factor can be made lower/higher and
the frequency resolution can be made sparser/finer[15,16].
Also, it is a tight frame and its inverse can be im-
plemented efficiently via the transpose of the forward

Fig. 1. Frequency-domain decomposition of WT.
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transform. Subsequent studies have shown this MST
method as a more desirable signal representation ap-
proach over the WT in some application area[16,20].
In this letter, we firstly gave a brief introduction to
this RWT, and then presented the RWT based pan-
sharpening algorithm. We also showed the desirably
practical performance of this pan-sharpening method
with experiments, and summarized the shortcomings and
subsequent tasks of this method finally.

Most previous research on wavelet transforms with
rational dilation considered only the critically-sampled
case, such as the well-known orthogonal case of
Auschor[15]. The critically-sampled RWT increases the
sampling in frequency domain over the WT, but not in
spatial domain. As shown in Fig. 2, the WT and NSWT
can be understood to sample the time-frequency (T-F)
plane with {A=2, B=2} and {A=2, B=1} respectively,
whereas the critically-sampled RWT sets {A = q/p,
B = q/(q − p)}. In contrast, the over-complete RWT,
realized using the iterated filter bank (FB) in Fig. 3,
samples the T-F plane more densely with {A = q/p,
B = s}. Here and below, p, q ∈Z, 16 p < q, gcd(p,
q)=1 and s ∈Z, p/q+1/s >1 (the reason is presented be-
low). Using the over-complete RWT, as seen in Fig. 3
and below, one can flexibly adjust the T-F sampling by
suitably tuning the parameter set (p, q, s).

We denote discrete-time sequences by lower case let-
ters as f(n) with n ∈Z, and denote the discrete-time
Fourier transform of f(n) as F (ω). F (ω) is 2π periodic
in ω, and is given by F (ω) =

∑

n f(n) exp(−iωn). Sup-
posed all discrete-time signals are real valued, we have
F ∗(ω) = F (−ω). The perfect reconstruction (PR) of the
FB in Fig. 3 can be granted if

{

H(ω) = 0, ω ∈ [π/q, π]

G(ω) = 0, ω ∈ [0, (1 − 1/s)π]
, and

{

|H(ω)| =
√

pq, ω ∈ [0, (1 − 1/s)π/p]

|G(ω)| =
√

s, ω ∈ [p/qπ, π]
. (1)

The transition bands of H(ω) and G(ω) can be ar-
bitrarily specified respectively. However, both should
keep a certain degree of differentiability so as to pro-
vide h(n) and g(n) with better time-domain localization
ability at the same time. As higher differentiability in
frequency domain results in the slower decay of the im-
pulse response in time domain, the frequency response
of Daubechies wavelet with the vanishing moment num-
ber of two was used here. As shown in Fig. 4, such
specification provides the filter with a better localiza-
tion ability in both time and frequency domain. After
the specification of H(ω) and G(ω), the filtering to any
discrete signal as that in Fig. 3 can be directly imple-
mented in frequency domain.

In order to clarify the behavior of the iterative filter
bank in Fig. 3, the order of the filters and the re-samplers
was exchanged by using noble identities for obtaining the
equivalent combined filter at each decomposition level
that acts directly on the input and follows by a re-sampler
(the band-limiting condition (1) of the designed low-pass
filter makes the exchange possible)[16]. Finally, we ob-
tained a low-pass combined filter Φj(ω) and a high-pass

Fig. 2. Sampling lattice in T-F plane.

Fig. 3. Decomposition and reconstruction of RWT.

Fig. 4. |G(ω)| (a) and g(n) (b) in the case of (p, q, s)=(2, 3,
2).

combined filter Ψ j(ω) for the decomposition level of j.

For j=1, Φ1 = H(ω)/p and Ψ1(ω) = G(ω); for j >2,
Φj(ω) = Φj(ω/pj)/pj, and Ψ j(ω) = Ψj(ω/pj−1)/pj−1,
ω ∈ [0, π]. Here,

Φj(ω) =







∏j−1

k=0
H(ωqj−(k+1)pk), ω ∈ [0, π/qj ]

0, ω ∈ (π/qj , π]
, and

Φj(ω) =







∏j−1

k=0
H(ωqj−(k+1)pk), ω ∈ [0, π/qj ]

0, ω ∈ (π/qj , π]
.

(2)

Using the two combined filters, one can convert the
iterative filter bank in Fig. 3 to its equivalent filter bank
as presented in Fig. 5. Here, each structure surrounded
by an ellipse is an ideal re-sampler[16]. We then can
calculate the Q-factor as a function of the parameter set
(p, q, s). From the analysis above, we see both Φj(ω)

and Ψ j(ω) has a flat pass band if (1 − 1/s) > (p/q)2.

Provided that the two transition bands of the Ψ j(ω) are
both half-band, just like the specification here, the edge
of the pass band on each side is the middle point of each
transition band respectively. Then we can obtain that
Qj(p, q)=

√

p/q/(1 − p/q) for j > 1.
Since Qj(p, q) is constant and independent of the de-

composition level j, the iterated FB shown in Fig. 3
is a constant-Q transform. As shown in Fig. 6, one
can flexibly achieve a sparser/finer frequency-domain
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Fig. 5. Equivalent system of that in Fig. 3.

Fig. 6. |Ψ j | of RWT in different (p, q, s) sets: (a) (2, 3, 2)
and (b) (4, 5, 3).

decomposition by using a low/high Q-factor. Because
sparser/finer frequency-domain decomposition results in
finer/sparser space-domain decomposition, one should
rationally pursue the Q-factor in practical.

The one-dimensional (1D) over-complete RWT dis-
cussed above can be expanded to its 2D counterpart
via tensor product approach as other MST does[15]. As
seen in Figs. 7 and 2, we should suitably choose the pa-
rameter s, since there is an inverse relationship between
the ideally frequency-domain response and the densely
spatial-domain sampling.

The RWT (simplified denotation for the over-complete
RWT) based pan-sharpening algorithm is similar to that
of many other MSTs[1−4,10,11]. Step I, register the MS
image and PAN image; perform principle-component-
analysis (PCA) or intensity-hue-saturation (IHS) trans-
form to the original MS image; match the histogram of
PAN image (P ) to the first component or the intensity
(I) of the MS image; obtain the matching result (P ′).
Step II, fuse I and P ′ to generate fused image I ′; perform
J-levels RWT decomposition to P ′ and I as that in Fig.
3; obtain one approximation and J details for P ′ and
I respectively; fuse the two approximations based on a
kind of fusion rule, and each detail pair based on the
same rule or another; perform RWT reconstruction to
the fused approximation and details to obtain I ′. Step
III, perform PCA or IHS inverse transform using I ′ to
generate the pan-sharpened MS image.

We pan-sharpened the MS images of ETM+ datasets
here to compare this RWT based pan-sharpening method
with other methods and evaluate the effectiveness of the
tunable-Q factor in the RWT. Two ETM+ datasets of
different oscillatory nature in Yantai, China, were used
here. As shown in Fig. 8, each MS image is composed of
Band2, Band3 and Band4 and has a size of 256×256×3,
and each PAN image has a size of 512×512.

Four other MST based pan-sharpening methods were
also performed for comparison, including that of WT,
NSWT, CVT and NSCT. In addition, IHS and PCA as

two traditional methods were considered too. We em-
ployed four-level decomposition for all the MSTs, and
used Daubechies 9/7 filters for the WT and NSWT. For
the directional FB in the CVT and NSCT, we used (3,
4, 4, 5) directional levels for the four levels respectively.
Different parameter sets were taken into account for the
RWT, whereas the conditions q = p + 1 and s = p were
also used for a clear comparison. Therefore, we used
RWT(p) to denote these RWTs using different parame-
ter sets below.

For all these MST based pan-sharpening methods, we
used the IHS transform to obtain the component I, and
used the same set of fusion rules as described below.
These fusion rules are relatively simple, as this way,
one can observe to what extent the method is efficient
without the use of more complex fusion rules. The ap-
proximation of the fused image I ′ was replaced by the
average of the two approximations obtained from P ′ and
I respectively, and the detail of I ′ at each level was
obtained by using the following three fusion rules respec-
tively. Rule I is based on pixel value, i.e. to set the
corresponding larger absolute value of the two details
(resulted from P ′ and I respectively) to be the detail of
I ′. Rule II is based on regional absolute value, i.e. firstly
to compare the regional absolute value of the two details
and obtain a binary decision map, then to perform con-
sistency verification to the map, finally to obtain the
detail of I ′ based on the verified map[1,3]. Rule III is
based on regional variance. It is the same as Rule II ex-
cept using the regional variance rather than the regional
absolute value. In this experiment, the region for the
Rule II and III is a 3×3 window for each pixel.

We also used several fusion quality indexes to objec-
tively evaluate the performance of each method, includ-
ing the standard variance[3,14] (Std), the entropy[10,14]

(E ) and the sharpness[10,14] (SP) of the pan-sharpened
images, as well as the spectral distortion[4] (Dist), the
correlation[5,12] (Corr), the relative average spectral
error[2,8] (RASE) and the relative global dimensional
synthesis error[2,8,9] (ERGAS) between original images
and pan-sharpened images. The former three of the
seven indexes will be higher if more structural detail is
preserved; the Dist, RASE and ERGAS will be lower and

Fig. 7. |Ψ2Ψ2| of 2D RWT in different (p, q, s) sets: (a) (2,
3, 2) and (b) (2, 3, 1).

Fig. 8. (a) Composed MS images of Band 2, Band 3 and Band
4, and (b) the PAN images, for the two datasets used.
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the Corr will be higher if less spectral distortion is gener-
ated. We implemented all the experiments in MATLAB
environment.

For both datasets, as shown in Figs. 9 and 10, PCA and
IHS generate severer spectral distortion compared with
all the MST based methods, and RWT based method
preserves slightly more structural details compared with
the other MST based methods (the reason to use such
two parameters is presented below). Moreover, the pan-
sharpened results based on the other two rules show
similar advantages of the RWT based method. Using
the proposed method, we can see the spatial and the
spectral resolution of the original MS images appear to
have been better enhanced. That is, the results of the
pan-sharpening contain more structural details of the
PAN image and richer spectral information of the MS
images.

Tables 1 and 2 present a detailed and objectively com-
parison among these methods. For Dataset 1 and all
the fusion rules, the RWT using the parameter 3 obtains
more desirably quality index results than the others in
most cases, including not only the two traditional meth-
ods and the other MST based methods, but also these
using the other parameters; for Dataset 2, the one using
the parameter 5 achieves the similar performance.

To evaluate the effectiveness of the tunable Q-factor in
the proposed method, we presented the values resulted
from the RWT using different parameters and Rule III
in Fig. 11. As seen, for a give dataset, there exist better
suitable (p, q, s) parameter sets that can yield more
promising pan-sharpened result among all the parameter

Fig. 9. Close-up show of the original (a) MS and (b) PAN
images, and the results from the method based on (c) IHS,
(d) PCA, (e) WT, (f) NSWT, (g) CVT, (h) NSCT, and (i)
RWT(3), using Rule III and Dataset 1.

Fig. 10. Close-up show of the original (a) MS and (b) PAN
images, and the results from the method based on (c) IHS,
(d) PCA, (e) WT, (f) NSWT, (g) CVT, (h) NSCT, and (i)
RWT(5), using Rule III and Dataset 2.

set cases. Furthermore, the values corresponding to the
other two rules also share this variation pattern.

Table 1. Fusion Quality Indexes from Different
Methods for Dataset 1

Method Std Ent SP Dist Corr
RASE ER-
(%) GAS

WT 19.713 6.977 10.718 5.455 0.933 4.415 1.981

NSWT 19.719 6.978 10.721 5.452 0.932 4.374 1.852

Rule CVT 19.738 6.992 10.752 5.446 0.934 4.133 1.780

I NSCT 19.723 6.985 10.756 5.447 0.934 4.087 1.742

RWT(3) 19.741 7.004 10.750 5.441 0.935 3.968 1.684

RWT(5) 19.708 6.975 10.715 5.486 0.930 4.484 1.992

WT 19.358 6.966 10.539 5.536 0.924 4.382 1.909

NSWT 19.363 6.968 10.541 5.538 0.924 4.119 1.822

Rule CVT 19.377 6.974 10.550 5.535 0.925 3.935 1.685

II NSCT 19.381 6.976 10.552 5.535 0.925 3.981 1.703

RWT(3) 19.379 6.977 10.559 5.521 0.925 3.894 1.634

RWT(5) 19.349 6.964 10.536 5.566 0.923 4.356 1.886

WT 19.378 6.972 10.553 5.640 0.925 4.453 1.954

NSWT 19.380 6.974 10.558 5.610 0.925 4.272 1.847

Rule CVT 19.402 6.978 10.559 5.594 0.926 3.933 1.716

III NSCT 19.407 6.980 10.560 5.592 0.926 3.928 1.704

RWT(3) 19.412 6.983 10.562 5.566 0.927 3.920 1.656

RWT(5) 19.373 6.974 10.559 5.595 0.926 4.364 1.894

IHS 13.714 6.874 6.622 18.341 0.908 26.566 10.502

PCA 7.988 6.803 4.427 36.762 0.871 49.752 21.629

The values in the bold-font style are the best results for
each fusion rule.

Table 2. Fusion Quality Indexes from Different
Methods for Dataset 2

Method Std Ent SP Dist Corr
RASE ER-
(%) GAS

WT 31.856 6.825 12.492 7.724 0.926 6.491 2.846

NSWT 31.975 6.832 12.504 7.719 0.928 6.469 2.814

Rule CVT 32.057 7.023 12.516 7.638 0.928 6.225 2.732

I NSCT 32.024 6.849 12.531 7.646 0.928 6.162 2.691

RWT(3) 31.618 6.821 12.487 7.794 0.927 6.574 2.933

RWT(5) 32.159 7.019 12.527 7.622 0.929 5.911 2.471

WT 31.164 6.723 11.582 8.017 0.915 6.016 2.471

NSWT 31.276 6.725 11.586 8.023 0.915 5.964 2.425

Rule CVT 31.372 6.894 11.589 7.912 0.916 5.526 2.288

II NSCT 31.39 6.826 11.593 7.984 0.916 5.541 2.357

RWT(3) 31.043 6.718 11.579 8.118 0.914 6.114 2.482

RWT(5) 31.413 6.915 11.608 7.913 0.916 5.531 2.309

WT 31.486 6.714 11.328 8.122 0.913 6.117 2.604

NSWT 31.54 6.728 11.369 8.110 0.914 6.024 2.581

Rule CVT 31.552 6.849 11.488 8.003 0.917 5.804 2.424

III NSCT 31.554 6.832 11.505 7.996 0.916 5.765 2.398

RWT(3) 31.101 6.805 11.356 8.135 0.915 6.281 2.633

RWT(5) 31.577 6.942 11.612 7.936 0.917 5.528 2.307

IHS 25.774 6.818 7.941 22.744 0.910 38.410 16.497

PCA 15.958 6.634 5.224 32.651 0.884 51.954 24.583
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Fig. 11. Quality indexes resulted from the RWT using differ-
ent parameters, for Dataset 1 (upper) and Dataset 2 (down).

In Conclusion, we propose a rational-dilation wavelet
based pan-sharpening scheme for pan-sharpening MS
images of different oscillatory nature. The transform
provides us with a tunable parameter set of (p, q, s) by
which one can flexibly tune the Q-factor in the multi-
scale decomposition. We employed the RWT based pan-
sharpening method to fuse the MS images and PAN
images of ETM+ datasets. The results show that for
this pan-sharpening method, different (p, q, s) sets will
result in different performance, and these using better
suitable (p, q, s) sets preserve more feature details while
generate less spectral distortion compared with that of
other widely-used pan-sharpening methods.

As seen, the curvelet and contourlet based pan-
sharpening methods sometimes outperformed the pro-
posed method, so an effectively directional-selective
scheme should be integrated into this method latterly.
Moreover, one should take into account the best suitable
parameter set for a given dataset when using the method
in practice, thus another subsequent issue is to find the
strategy of choosing the best suitable (p, q, s) set corre-
sponding to a particular dataset.

This work was supported by the National Natural Sci-
ence Foundation of China (No. 2007CB407203).
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